Boosting Techniques for Nonlinear Time Series Models

نویسندگان

  • Nikolay Robinzonov
  • Gerhard Tutz
  • Torsten Hothorn
چکیده

Many of the popular nonlinear time series models require a priori the choice of parametric functions which are assumed to be appropriate in specific applications. This approach is used mainly in financial applications, when sufficient knowledge is available about the nonlinear structure between the covariates and the response. One principal strategy to investigate a broader class on nonlinear time series is the Nonlinear Additive AutoRegressive (NAAR) model. The NAAR model estimates the lags of a time series as flexible functions in order to detect nonmonotone relationships between current observations and past values. We consider linear and additive models for identifying nonlinear relationships. A componentwise boosting algorithm is applied to simultaneous model fitting, variable selection, and model choice. Thus, with the application of boosting for fitting potentially nonlinear models we address the major issues in time series modelling: lag selection and nonlinearity. By means of simulation we compare the outcomes of boosting to the outcomes obtained through alternative nonparametric methods. Boosting shows an overall strong performance in terms of precise estimations of highly nonlinear lag functions. The forecasting potential of boosting is examined on real data where the target variable is the German industrial production (IP). In order to improve the model’s forecasting quality we include additional exogenous variables. Thus we address the second major aspect in this paper which concerns the issue of high-dimensionality in models. Allowing additional inputs in the model extends the NAAR model to an even broader class of models, namely the NAARX model. We show that boosting can cope with large models which have many covariates compared to the number of observations. keywords: componentwise boosting, forecasting, nonlinear times series, autoregressive additive models, lag selection. ∗Corresponding author. Email: [email protected], Tel.: +49 89 2180 6407, Fax: +49 89 2180 5040

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Which Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?

Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...

متن کامل

Investigating Chaos in Tehran Stock Exchange Index

Modeling and analysis of future prices has been hot topic for economic analysts in recent years. Traditionally, the complex movements in the prices are usually taken as random or stochastic process. However, they may be produced by a deterministic nonlinear process. Accuracy and efficiency of economic models in the short period forecasting is strategic and crucial for business world. Nonlinear ...

متن کامل

Functional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price

Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...

متن کامل

Gyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods

In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...

متن کامل

Boosting and Bagging of Neural Networks with Applications to Financial Time Series

Boosting and bagging are two techniques for improving the performance of learning algorithms. Both techniques have been successfully used in machine learning to improve the performance of classification algorithms such as decision trees, neural networks. In this paper, we focus on the use of feedforward back propagation neural networks for time series classification problems. We apply boosting ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008